Diverse Human Motion Prediction Guided by Multi-Level Spatial-Temporal Anchors

Sirui Xu

Yu-Xiong Wang*

Liang-Yan Gui*

University of Illinois Urbana-Champaign

Diverse Human Motion Prediction

Historical Motion ${f X}$

Diverse Predictions

Diverse Human Motion Prediction

 Human future motion is inherently multi-modal, especially in long term

Diverse Human Motion Prediction

- Human future motion is inherently multi-modal, especially in long term
- Predicting a diverse set of human activities is critical for real-world applications

rently ng term uman orld

Limitation: likelihood-based sampling

Latent Space

Sohn et al. Learning structured output representation using deep conditional generative models, NeurIPS 2015

Challenges: predictions are often concentrated in the major mode with less diversity — Mode Collapse

End Pose of Samples

Prior Work

DLow

- Require K additional latent flows to diversify samples
- Need to train the predictor and latent flows in two separate stages

Yuan et al. DLow: Diversifying latent flows for diverse human motion prediction, ECCV 2020 Mao et al. Generating smooth pose sequences for diverse human motion prediction, CVPR 2021

- Need to generate different body parts in a sequential manner

Motivation

- Future motions are not completely random or independent, following
 - Physical laws and body constraints
 - Trends in the history

random or independent, following hts

Motivation

- Future motions are not completely random or independent, following Physical laws and body constraints
- - Trends in the history

- Decompose future human motion in the latent space into
 - Deterministic learnable anchors
 - Stochastic noise

Our Approach: STARS

Latent Space

Sohn et al. Learning structured output representation using deep conditional generative models, NeurIPS 2015

End Pose of Samples

STARS Formulation Basic prediction framework

Historical Motion X

STARS Formulation

Historical Motion X

Sampling

STARS Formulation Sampling

Historical Motion X

Sampling: spatial-temporal decomposition

STARS Formulation

STARS Formulation

Sampling: multi-level decomposition

Predictor Architecture Plug-in anywhere

STARS sampling is general, agnostic to predictor architectures

Predictor Architecture

- Using Discrete Cosine Transform (DCT) to convert motions to the frequency domain
- Using Spatial-Temporal Graph Convolutional Network (STGCN)

Predictor Architecture: IE-STGCN

- Spatial-Temporal Graph Convolutional Network (STGCN): $\mathbf{H}_{\nu}^{(l+1)} =$ $\sigma(\mathbf{Adj}^{(l)}\mathbf{H}_{\nu}^{(l)}\mathbf{W}^{(l)})$
 - Factorizing spatial-temporal connectivity: $Adj^{(l)} = Adj^{(l)}_{S}Adj^{(l)}_{f}$
 - Incorporating spatial-temporal anchors

Bottleneck spatial-temporal interactions

Predictor Architecture: IE-STGCN Bottleneck spatial-temporal interactions

- $\sigma(\mathrm{Adj}^{(l)}\mathrm{H}_{k}^{(l)}\mathrm{W}^{(l)})$

• Spatial-Temporal Graph Convolutional Network (STGCN): $\mathbf{H}_{\nu}^{(l+1)} =$

STARS significantly improves diversity and accuracy

Yuan et al. DLow: Diversifying latent flows for diverse human motion prediction, ECCV 2020 Zhang et al. We are more than our joints: Predicting how 3D bodies move, CVPR 2021 Mao et al. Generating smooth pose sequences for diverse human motion prediction, ICCV 2021

Human3.6M, #predictions = 50

STARS is general with different predictor architectures

Mao et al. Generating smooth pose sequences for diverse human motion prediction, ICCV 2021

Human3.6M, #predictions = 100

Generalizable to Deterministic Motion Prediction

Mao et al. Learning trajectory dependencies for human motion prediction, ICCV 2019 Sofianos et al. Space-time-separable graph convolutional network for pose forecasting, ICCV 2021 Dang et al. MSR-GCN: Multi-scale residual graph convolution networks for human motion prediction, ICCV 2021

Human3.6M, #predictions = 1

Diverse Motion Prediction

Diverse Motion Prediction

Explicitly sample with different anchors: To ensure motion diversity

Controllable Motion Prediction

Conclusions

- STARS: a simple yet effective and general framework that leverages learnable anchors to diversify predictions
- Enable controllable motion prediction in native space and time with spatial-temporal anchors
- Future work: extend STARS for other prediction tasks

Thank you And welcome to

Poster 1.A, 49 25-Oct-22

https://sirui-xu.github.io/STARS/

