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• Human future motion is inherently 

multi-modal, especially in long term
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• Human future motion is inherently 

multi-modal, especially in long term

• Predicting a diverse set of human 

activities is critical for real-world 

applications



Limitation: likelihood-based sampling

Latent Space End Pose of Samples

Sample

Challenges: predictions are often concentrated in the major mode 
with less diversity — Mode Collapse

Mode
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CVAE

Sohn et al. Learning structured output representation using deep conditional generative models, NeurIPS 2015



Prior Work

Yuan et al. DLow: Diversifying latent flows for diverse human motion prediction, ECCV 2020
Mao et al. Generating smooth pose sequences for diverse human motion prediction, CVPR 2021

- Need to generate different body parts 
in a sequential manner

DLow GSPS

- Require K additional latent flows to 
diversify samples
- Need to train the predictor and latent 

flows in two separate stages
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Motivation

• Future motions are not completely random or independent, following

• Physical laws and body constraints

• Trends in the history
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• Future motions are not completely random or independent, following

• Physical laws and body constraints

• Trends in the history

• Decompose future human motion in the latent space into

• Deterministic learnable anchors 

• Stochastic noise
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Motivation



Our Approach: STARS

Latent Space End Pose of Samples

Sample

Mode

Anchor

Noise

CVAE

STARS 
(Ours)
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Sohn et al. Learning structured output representation using deep conditional generative models, NeurIPS 2015



STARS Formulation
Basic prediction framework

10

𝐳 ∼ 𝑝(𝐳)
Likelihood Sampling

Sample

Mode

Latent Space

Predictor
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Sampling
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𝐳 ∼ 𝑝(𝐳)
Likelihood Sampling

𝐚!Anchor

Latent Space

Anchor

Noise

Predictor
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STARS Formulation
Sampling: spatial-temporal decomposition
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𝐳 ∼ 𝑝(𝐳)
Likelihood Sampling

𝐚!Anchor

+

Predictor
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STARS Formulation
Sampling: multi-level decomposition
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𝐳 ∼ 𝑝(𝐳)
Likelihood Sampling

Predictor

+
+

A
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Temporal
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STARS Formulation
Training

Anchors
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Predictor

Predictor

Predictor
Parameters

Best-of-many

Gradient Flow𝐚!

𝐚"



• STARS sampling is general, agnostic to predictor architectures

Plug-in anywhere

Predictor Architecture

𝐳!

Concat
Predictor
Architecture

Predictor
Architecture

STARS Sampling
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Predictor Architecture

• Using Discrete Cosine Transform (DCT) to convert motions to the 

frequency domain

• Using Spatial-Temporal Graph Convolutional Network (STGCN)

𝐳!

ConcatSTGCN STGCNDCT IDCT

STARS Sampling



Bottleneck spatial-temporal interactions
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Predictor Architecture: IE-STGCN

• Spatial-Temporal Graph Convolutional Network (STGCN): 𝐇!
(#$%) =

𝜎(𝐀𝐝𝐣(#)𝐇!
(#)𝐖(#))

• Factorizing spatial-temporal connectivity: 𝐀𝐝𝐣(#) = 𝐀𝐝𝐣'
(#)𝐀𝐝𝐣(

(#)

• Incorporating spatial-temporal anchors



Predictor Architecture: IE-STGCN
Bottleneck spatial-temporal interactions
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• Spatial-Temporal Graph Convolutional Network (STGCN): 𝐇!
(#$%) =

𝜎(𝐀𝐝𝐣(#)𝐇!
(#)𝐖(#))

• Spatial Interaction Pruning: 𝐀𝐝𝐣
̂
'
(#) = 𝐌'⊙𝐀𝐝𝐣'

(#)

𝐌!



STARS significantly improves diversity and accuracy
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Human3.6M, #predictions = 50
Diversity Accuracy

Yuan et al. DLow: Diversifying latent flows for diverse human motion prediction, ECCV 2020
Zhang et al. We are more than our joints: Predicting how 3D bodies move, CVPR 2021
Mao et al. Generating smooth pose sequences for diverse human motion prediction, ICCV 2021



STARS is general with different predictor architectures
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Human3.6M, #predictions = 100

Mao et al. Generating smooth pose sequences for diverse human motion prediction, ICCV 2021



Mao et al. Learning trajectory dependencies for human motion prediction, ICCV 2019
Sofianos et al. Space-time-separable graph convolutional network for pose forecasting, ICCV 2021
Dang et al. MSR-GCN: Multi-scale residual graph convolution networks for human motion prediction, ICCV 2021

Generalizable to Deterministic Motion Prediction

7
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Human3.6M, #predictions = 1MPJPE↓ MPJPE↓
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Diverse Motion Prediction

GSPS

STARS
(Ours)
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Diverse Motion Prediction
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Controllable Motion Prediction



Conclusions

• STARS: a simple yet effective and general framework that 
leverages learnable anchors to diversify predictions 

• Enable controllable motion prediction in native space and 
time with spatial-temporal anchors

• Future work: extend STARS for other prediction tasks
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Thank you

And welcome to

https://sirui-xu.github.io/STARS/

Poster 1.A, 49
25-Oct-22

https://sirui-xu.github.io/STARS/

